Scientists discover potential path to improving samarium-cobalt magnets

Physics
Scientists discover potential path to improving samarium-cobalt magnets
Credit: Ames Laboratory

Scientists have discovered a potential tool to enhance magnetization and magnetic anisotropy, making it possible to improve the performance of samarium-cobalt magnets.

The scientists, at the U.S. Department of Energy’s Critical Materials Institute at Ames Laboratory, in collaboration with the Nebraska Center for Materials and Nanoscience and the Department of Physics and Astronomy at the University of Nebraska, identified orbital-moment quenching as the possible tool, and rationalized the quenching in terms of the dependence of electrical charge distribution in samarium atoms.

Sm-Co magnets were the first rare-earth permanent magnets, and are still the top performer in applications where resistance to demagnetization—its coercivity—and performance at high temperatures are important.

The scientists at first sought to test the limits of substituting iron for some of the cobalt, attempting to make a Sm-Co magnet comparable in strength to neodymium iron boron (Nd-Fe-B) magnets, which has a higher magnetic moment.

“The Critical Materials Institute (CMI) has as one of its moonshots the discovery of materials that are comparable in strength to neodymium magnets, but with the high-temperature durability of samarium magnets,” said Durga Paudyal, Ames Laboratory scientist and project leader for Predicting Magnetic Anisotropy at CMI. “We were looking to increase the magnetic moment of the standard Sm-Co magnet.”

The led to the discovery that substitutions of iron could range as high as 20 percent, keeping the coercivity of the magnet intact. Computational theory and modeling results showed that the electronic structure of the Samarium in the material may violate Hund’s rule, which predicts how electrons occupy available orbitals in the atomic structure.

The research findings will help scientists sort out the parameters of in rare-earth materials, and help speed discovery of potentially useful magnets in the future.

The research is further discussed in “Anisotropy and Orbital Moment in Sm-Co Permanent Magnets.”




Explore further

New magnet without the deficiencies of conventional samarium and neodymium magnets


More information:
Bhaskar Das et al. Anisotropy and orbital moment in Sm-Co permanent magnets, Physical Review B (2019). DOI: 10.1103/PhysRevB.100.024419

Provided by
Ames Laboratory




Citation:
Scientists discover potential path to improving samarium-cobalt magnets (2019, August 13)
retrieved 13 August 2019
from https://phys.org/news/2019-08-scientists-potential-path-samarium-cobalt-magnets.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Articles You May Like

There could be up to 10 billion Earth-like planets in our galaxy alone
Ice sheets impact core elements of the Earth’s carbon cycle
Studying the excitation spectrum of a trapped dipolar supersolid
Best of both worlds: Asteroids and massive mergers
Why are so many languages spoken in some places and so few in others?